

Framework for the Evaluation of Learning

Applied Science and Technology

Secondary School Cycle Two

Table of Contents

Introduction	3
Seeks answers or solutions to scientific or technological problems	
Communicates in the languages used in science and technology	4
Makes the most of his/her knowledge of science and technology	
Communicates in the languages used in science and technology	4
Appendix 1	5
Appendix 2	5

Reproduction rights

Educational institutions are authorized to reproduce this document in whole or in part. If copies are sold, the price must not exceed the cost of reproduction. This document is available at:

[www7.mels.gouv.qc.ca/dc/evaluation/index_en.php]

Framework for the Evaluation of Learning

Introduction

Following the announcement of new orientations regarding the evaluation of student learning by the Minister of Education, Recreation and Sports, the *Basic school regulation for preschool, elementary and secondary education* has been amended to require that, as of July 1, 2011, evaluation be based on the *Framework for the Evaluation of Learning* produced for each program. These frameworks provide guidelines for the evaluation of learning specific to each subject in the Québec Education Program in order to determine students' results, which will be communicated in the provincial report card.

The role of knowledge in evaluation

Knowledge is at the heart of student learning, since it provides the foundation for all school subjects. Knowledge gives students the means to reflect and to understand the world around them, and its acquisition is the first step in any learning process. Through the knowledge they acquire and through the connections they are able to make among different items of knowledge, students can develop an understanding of simple and complex concepts. Knowledge must therefore be acquired, understood, applied and used thoroughly. Evaluation must thus take place throughout the learning process to ensure proficient knowledge.

Organization of the evaluation frameworks

For each subject, the framework defines the criteria on which the student's results must be based. These evaluation criteria are based on the ones in the Québec Education Program.

The framework stipulates the weighting of the competencies that makes it possible to determine the subject marks to be recorded in the report card. Where applicable, it provides direct links to the *Progression of Learning* documents that give additional information on the learning specific to each subject in the Québec Education Program.

The teacher's role in evaluation

Section 19 of the *Education Act* stipulates that teachers are entitled "to select the means of evaluating the progress of students so as to examine and assess continually and periodically the needs and achievement of objectives of every student entrusted to [their] care." It is therefore up to teachers to choose the means of evaluating student learning.

This arrow indicates that the evaluation of learning involves a process of going back and forth between the acquisition of subject-specific knowledge and the understanding, application and use of this knowledge. Evaluation must thus take place throughout the learning process to ensure proficient knowledge.

Knowledge will be evaluated at specific times chosen by the teacher, who will determine the importance of the various dimensions to be evaluated in calculating the student's mark.

Seeks answers or solutions to scientific or technological problems

Communicates in the languages used in science and technology

PRACTICAL: 40%

Evaluation of Learning

Evaluation criteria¹

- Proficiency of subject-specific knowledge targeted in the Progression of Learning:
 - Techniques
 - Strategies*

- Appropriate representation of the situation
- Development of a suitable plan of action

Accurate interpretation of the problem

Relevant use of scientific and technological knowledge

Appropriate formulation of explanations or solutions

- Appropriate implementation of the plan of action
- Development of relevant explanations, solutions or conclusions

* The student must be provided with feedback on this element, but the element must not be considered when determining the student's mark in the report card.

Makes the most of his/her knowledge of science and technology

Communicates in the languages used in science and technology

Evaluation of Learning

Evaluation criteria²

- Proficiency of subject-specific knowledge targeted in the Progression of Learning:
 - The Material World
 - The Living World
 - The Earth and Space (Sec. IV)
 - The Technological World
 - Strategies*

* The student must be provided with feedback on this element, but the element must not be considered when determining the student's mark in the report card.

THEORY: 60%

Appendix 1

Information Clarifying the Criteria

Appropriate representation of the situation	Reformulation of the problemFormulation of hypotheses or possible solutions
Development of a suitable plan of action	 Planning of steps in the plan of action Control of variables Selection of resources (materials, equipment, tools, etc.)
Appropriate implementation of the plan of action	 Use of selected materials in accordance with the precision of the instruments or tools Observance of safety rules Recording of data Use of appropriate strategies and techniques Adjustments during the implementation of the plan of action Use of appropriate types of representation (tables, graphs, diagrams)
Development of relevant explanations, solutions or conclusions	 Formulation of explanations or conclusions in accordance with the data collected and knowledge acquired Verification of consistency of the hypothesis with the analysis of the results Production of a prototype in compliance with the specifications Proposal of improvements or new solutions Use of appropriate terminology, rules and conventions

Appendix 2

Information Clarifying the Criteria

Accurate interpretation of the problem Relevant use of scientific and technological knowledge	 Identification of elements relevant to the problem and the connections between them Proposal of a tentative explanation or solution Identification of operating principles Selection and application of: concepts laws models theories
Appropriate formulation of explanations or solutions	 Formulation or justification of explanations related to the problem Formulation or justification of solutions related to the technical object or system Justification of actions on the basis of scientific and technological knowledge Use of mathematical formalism (if needed) Use of appropriate terminology, rules and conventions

- 1. The elements under the criterion related to the proficiency of subject-specific knowledge can be found in the *Progression of Learning*. Information clarifying the other criteria is presented in Appendix 1 of this document.
- 2. The elements under the criterion related to the proficiency of subject-specific knowledge can be found in the *Progression of Learning*. Information clarifying the other criteria is presented in Appendix 2 of this document.